On General Adaptive Sparse Principal Component Analysis
نویسندگان
چکیده
The method of sparse principal component analysis (S-PCA) proposed by Zou, Hastie, and Tibshirani (2006) is an attractive approach to obtain sparse loadings in principal component analysis (PCA). S-PCA was motivated by reformulating PCA as a least-squares problem so that a lasso penalty on the loading coefficients can be applied. In this article, we propose new estimates to improve S-PCA in the following two aspects. First, we propose a method of simple adaptive sparse principal component analysis (SAS-PCA), which uses the adaptive lasso penalty (Zou 2006; Wang, Li, and Jiang 2007) instead of the lasso penalty in S-PCA. Second, we replace the least-squares objective function in S-PCA by a general least-squares objective function. This formulation allows us to study many related sparse PCA estimators under a unified theoretical framework and leads to the method of general adaptive sparse principal component analysis (GAS-PCA). Compared with SAS-PCA, GAS-PCA enjoys much improved finite sample performance. In addition, we show that, when a BIC-type criterion is used for selecting the tuning parameters, the resulting estimates are consistent in variable selection. Numerical studies are conducted to compare the finite sample performance of various competing methods. Datasets and computer code are available in the online supplements.
منابع مشابه
Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملSparse PCA: Optimal Rates and Adaptive Estimation
Principal component analysis (PCA) is one of the most commonly used statistical procedures with a wide range of applications. This paper considers both minimax and adaptive estimation of the principal subspace in the high dimensional setting. Under mild technical conditions, we first establish the optimal rates of convergence for estimating the principal subspace which are sharp with respect to...
متن کاملOn Adaptive Sparse Principal Component Analysis
In this simple note, we attempt to further improve the sparse principal component analysis (SPCA) of Zou et al. (2006) on the following two aspects. First, we replace the traditional lasso penalty utilized in the original SPCA by the most recently developed adaptive lasso penalty (Zou, 2006; Wang et al., 2006). By doing so, adaptive amounts of shrinkage can be applied to different loading coeff...
متن کامل